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Chapter 0

Introduction

“What is a man,” said Athos, “who has no landscape?
Nothing but mirrors and tides.”

—Anne Michaels, Fugitive Pieces

0.1 What is mathematical modeling?

A mathematical model is a representation of some real object or
phenomenon in terms of quantities (numbers). The goal of modeling
is to create a description of the object in question that may be
used to pose and answer questions about it without doing hard
experimental work. A good analogy for a mathematical model is a
map of a geographic area: a map cannot record all the complexity
of the actual piece of land, because the map would need to be size
of the piece of land, and then it wouldn’t be very useful! Maps, and
mathematical models, need to sacrifice the details and provide a
bird’s-eye view of reality to guide the traveler or the scientist. The
representation of reality in the model must be simple enough to be
useful, yet complex enough to capture the essential features of what
it is trying to represent.

Since the time of Newton, physicists have been very successful
at using mathematics to describe the behavior of matter of all sizes,
ranging from subatomic particles to galaxies. However, mathemati-
cal modeling is a new arrow in a biologist’s quiver. Many biologists

1



2 CHAPTER 0. INTRODUCTION

would argue that living systems are much more complex than either
atoms or galaxies, since even a single cell is made up of a mind-
boggling number of highly dynamic, interacting entities. This com-
plexity presents a great challenge and fascinating new questions.

New advances in experimental biology are producing data that
make quantitative methods indispensable for biology. The advent
of genetic sequencing in the 1970s and 1980s has allowed us to de-
termine the genomes of different species, and in the past few years
next-generation sequencing has reduced sequencing costs for an in-
dividual human genome to a few thousand dollars. The resulting
deluge of quantitative data has answered many outstanding ques-
tions and has also led to entirely new ones. We now understand that
knowledge of genomic sequences is not enough for understanding
how living things work, so the burgeoning field of systems biology in-
vestigates the interactions among genes, proteins, or other entities.
The central problem is to understand how a network of interactions
among individual molecules can lead to large-scale results, such as
the development of a fertilized egg into a complex organism. The
human mind is not suited for making correct intuitive judgements
about networks comprised of thousands of actors. Addressing ques-
tions of this complexity requires quantitative modeling.

0.2 Purpose of this book

This textbook is intended for a college-level course for biology and
pre-medicine majors, or for more established scientists interested in
learning the applications of mathematical methods to biology. The
book brings together concepts found in mathematics, computer sci-
ence, and statistics courses to provide the student a collection of
skills that are commonly used in biological research. The book has
two overarching goals. The first is to explain the quantitative lan-
guage that often is a formidable barrier to understanding and criti-
cally evaluating research results in biological and medical sciences.
The second is to teach students computational skills that they can
use in their future research endeavors. The main premise of this
approach is that computation is critical for understanding abstract
mathematical ideas.
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These goals are distinct from those of traditional mathematics
courses that emphasize rigor and abstraction. I strongly believe that
understanding mathematical concepts is not contingent on being
able to prove all of the relevant theorems. Instead, premature focus
on abstraction obscures the ideas for most students; it is putting
the theoretical cart before the experiential horse. I find that stu-
dents can grasp deep concepts when they are allowed to experience
them tangibly as numbers or pictures, and those with an abstract
mindset can generalize and add rigor later. As I demonstrate in
part 3 of the book, Markov chains can be explained without rely-
ing on the machinery of measure theory and stochastic processes,
which require graduate-level mathematical skills. The idea of a sys-
tem randomly hopping between a few discrete states is far more
accessible than sigma algebras and martingales. Of course, some
abstraction is necessary when presenting mathematical ideas, and
I provide correct definitions of terms and supply derivations when
I find them to be illuminating. But I avoid rigorous proofs and
always favor understanding over mathematical precision.

The book is structured to facilitate learning computational skills.
Over the course of the text, students accumulate programming ex-
perience, progressing from assigning values to variables in Chapter 1
to solving nonlinear Ordinary differential equations (ODEs) numer-
ically by the end of the book. Learning to program for the first
time is a challenging task, and I facilitate it by providing sample
scripts for students to copy and modify to perform the requisite
calculations. Programming requires careful, methodical thinking,
which facilitates deeper understanding of the models being simu-
lated. In my experience teaching this course, students consistently
report that learning basic scientific programming is a rewarding
experience, which opens doors for them in future research and learn-
ing.

It is of course impossible to span the breadth of mathemat-
ics and computation used for modeling biological scenarios. This
did not stop me from trying. The book is broad but selective,
sticking to a few key concepts and examples that should provide
enough of a basis for a student to explore a topic in more depth
later on. For instance, I do not go through the usual menagerie of
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probability distributions in Chapter 4 but only analyze the uniform
and the binomial distributions. If one understands the concepts
of distributions and their means and variances, it is not difficult
to read up on the geometric or gamma distribution if one encoun-
ters it. Still, I omitted numerous topics and entire fields, some
because they require greater mathematical sophistication, and oth-
ers because they are too difficult for beginning programmers (e.g.,
sequence alignment and optimization algorithms). I hope that you
do not end your quantitative journey with this book!

I take an even more selective approach to the biological top-
ics presented in every chapter. The book is not intended to teach
biology, but I do introduce biological questions I find interesting,
refer to current research papers, and provide discussion questions
for you to wrestle with. This requires a basic explanation of terms
and ideas, so most chapters contain a broad summary of a biologi-
cal field, such as measuring mutation rates, epidemiology modeling,
hidden Markov models for gene structure, and limitations of med-
ical testing. I hope the experts in these fields forgive my omitting
the interesting details that they spend their lives investigating, and
trust that I managed to get the basic ideas across without gross
distortion.

0.3 Organization of the book

Each chapter in the textbook is centered around a mathematical
concept, along with models, biological applications, and program-
ming. This multipronged approach provides a diverse set of teaching
tools: motivational questions from biology can be formalized us-
ing mathematical terms, solved for simple cases on the board, and
then demonstrated in more complex manifestations using the pro-
gramming language R. Each chapter contains enough material for a
week of learning and includes various assignments. The mathemat-
ics sections contain simple practice problems for the correspond-
ing mathematical skills, the programming sections contain either
debugging exercises or simple programming assignments, and the
biological modeling sections contain discussion questions intended
to stimulate students to think about assumptions and limitations
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of the models (and they frequently require students to read and
digest a research paper). Each chapter ends with multi-question
computational projects that walk students through implementing
and investigating a computational model for a biological question.

Part 1 of the textbook (Chapters 1–5) starts with elementary
mathematical ideas: variables and parameters, basic functions and
graphs, and descriptive statistics. These simple concepts pair well
with rudimentary programming steps that are introduced concur-
rently. Despite the conceptual simplicity, the first attempts at writ-
ing and executing code are invariably difficult for students, so I find
this combination pedagogically sound. More advanced students can
treat the first three chapters as review, but those who have never
written code before are advised to focus on the programming ex-
ercises. Chapters 4 and 5 are less elementary, and students may
encounter something new in the realms of probability distributions
and estimation through sampling.

Part 2 of the book (Chapters 6–9) concerns relationships be-
tween two variables, both categorical and numerical. This is a largely
data-driven part of the course, but it also introduces crucial theo-
retical concepts that are used later, particularly conditional prob-
ability and independence. I present the standard chi-squared test
for independence and then warn students about misuse of p-values
in the chapter on Bayesian thinking. The ideas of linear regression
are familiar to most students at this level, but few are acquainted
with correlation at a more than perfunctory level. The last chapter
of this part delves into nonlinear fitting using logarithmic transfor-
mations and its applications.

Part 3 of the book (Chapters 10–13) is an introduction to Markov
models divided into four chapters. The story progresses from de-
scribing models with transition matrices and flow diagrams to recur-
sive calculation of probability distribution vectors, then to stationary
distributions and finally to describing dynamics using eigenvalues
and eigenvectors. The level of mathematical sophistication jumps
considerably, and so do the computational expectations. Students
learn to generate simulated strings of Markov states and then to
repeat the simulations to generate entire data sets evolving over
time.
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Part 4 of the book (Chapters 14–17) addresses one-variable dy-
namical systems. The first chapter analyzes linear discrete-time
equations and their solutions; the next one graduates to linear dif-
ferential equations and their solutions, which build on the discrete-
time ideas. We then move to graphical analysis of nonlinear ODEs,
and finish with a look at the crazy behavior and chaos in nonlinear
discrete-time models.

A one-semester (or one-quarter) course based on this book can
be designed in several ways. The first two parts of the book provide
the necessary foundation for the next two, both mathematically and
in programming skills, but parts 3 and 4 are essentially independent.
One could teach a reasonable course based on either parts 1, 2, and
3, or parts 1, 2, and 4. Another option is to omit the last chapter
of each part (Chapters 5, 9, 13, and 17), because they contain more
advanced topics than the rest and are designed to be skipped with-
out any detriment to the flow of ideas. I should note that with the
exception of part 4 (actually only the last three chapters), none of
the rest use any concepts from calculus, so one could design a course
for students with shaky or nonexistent knowledge of calculus. For
an audience with greater mathematical maturity, one could power
through part 1 in 2–3 weeks and be able to go through most of the
textbook in a semester.

A course based on this textbook can be tailored to fit the quanti-
tative needs of a biological sciences curriculum. At the University of
Chicago, the course I teach has replaced the last quarter of calculus
as a first-year requirement for biology majors. This material could
be used for a course without a calculus prerequisite that a student
takes before more rigorous statistics, mathematics, or computer sci-
ence courses. It may also be taught as an upper-level elective course
for students with greater maturity who may be ready to tackle the
chapters on eigenvalues and differential equations. My hope is that
it may also prove useful for graduate students or established sci-
entists who need an elementary but comprehensive introduction to
the concepts they encounter in the literature or that they can use in
their own research. Whatever path you traveled to get here, I wish
you a fruitful journey through biomathematics and computation!




